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Some Considerations in the Design of

Narrow-Band Waveguide Filters”

LEO YOUNGT, SENIOR MEMBER, IEEE

Summary—It is natural that design considerations common to
all kinds of filters should have received most attention in the litera-
ture. Some design considerations which are peculiar to waveguide
filters (being due to the dispersive property of waveguides) are
treated in this paper. It is shown that there are waveguide dimensions
which minimize the filter dissipation loss and also the filter pulse
power capacitance and which keep the nearest spurious-frequency
response farthest from the fundamental pass band. Graphical data
are presented to show how much is to be gained or lost by departing
from the usual dimensions.

INTRODUCTION

FILTER (by definition) is required to operate
A selectively over a spectrum of frequencies. The
specified frequency behavior can usually be met
by a variety of possible designs, some of which are bet-
ter suited than others to satisfy various additional re-
quirements which may be specified or desirable; the
electrical requirements may include low dissipation loss,
high pulse power capacitance and freedom from spurious
responses, in addition to the specified amplitude or
phase characteristics.
Some general design considerations, common to
lumped-constant, TEM-line (nondispersive) and wave-
guide (homogeneously dispersive) filters will first be

* Received July 5, 1963; revised manuscript received August 7,
1963. This work was supported by the Rome Air Development
Center under Contracts AF 30(602)-2734 and AF 30(602)-3174.

T Stanford Research Institute, Menlo Park, Calif.

summarized. Then we will discuss some special consid-
erations that are peculiar to waveguide filters, which
have an extra degree of freedom allowed by the choice
of waveguide cutoff wavelength.

GENERAL CONSIDERATIONS FOR BAND-Pass FILTERS

The design of narrow-band filters can be based on a
lumped-constant, low-pass prototype circuit.! Formulas
and tables? exist for filter elements g,, which give max-
imally flat, Chebyshev and maximally flat time delay
characteristics. Sometimes it is preferred to make the
filter elements all equal to one another (all g,=g). A
microwave filter based on this prototype may be con-
sidered to consist of a cascade of identical cavities and
will be called a matched-periodic (or just periodic)
filter.?* S. B. Cohn®® has shown that such a filter has

1S, B. Cohn, “Direct-coupled-resonator filters,” Proc. IRE, vol.
45, pp. 187-196; February, 1957.

2 G, L. Matthaei, L. Young, and E. M. T. Jones, “Design of
Microwave Filters, Impedance-Matching Networks, and Coupling
Structures,” SRI Project No. 3527, Contract No. DA 36-039 SC-87
398; January, 1963. See ch. 4, secs. 4.04—4.07 and 4.13.

3 Matthaet, et al., ib4d., see ch. 6, secs. 6.09, 6.14 and 6.15.

4+ L. Young, “Attenuation characteristics of periodic (equal-ele-
ment) filters,” Proc. IEEE, vol. 51, pp. 960-961; June, 1963.

5S. B. Cohn, “Dissipation loss in multiple-coupled-resonator
filters,” Proc. IRE, vol. 47, pp. 1342-1348; August, 1959.

6 S. B. Cohn, “Design considerations for high-power microwave
filters,” IRE Trans. oN MicrowavE THEORY AND TECHNIQUES,
vol. MTT-7, pp. 149-153; January, 1959.
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minimum dissipation loss®3.7 and maximum pulse power
capacitance®? for a given selectivity. It can further be
shown that there is an optimum number # of resonators
to give minimum midband dissipation loss in narrow-
band filters.*'! When the stop-band attenuation is
specified to be 4 db at any frequency in the stop band,
then

n o=~ 01154 4 0.7 (1)

resonators should be used.

In any filter there is a connection between the dis-
sipation loss,?® 1% the equivalent power ratio®!'? and the
group delay, which are approximately proportional to
one another. (The equivalent power ratio is inversely
proportional to the pulse power capacitance.) All three
quantities usually increase as the frequency moves away
from midband, reach a fairly sharp peak just outside
the pass band and then fall off quite rapidly.8:1?

The properties briefly summarized above hold for
waveguide as well as other types of filter. They show,
for instance, how the pass-band dissipation loss can be
minimized, or the pulse power can be maximized, in
terms of the filter elements, or by controlling their num-
ber. It is our purpose now to show that for waveguide
filters in particular, the waveguide dimensions can be
optimized under various conditions. We shall be mostly
concerned with the TE;, mode in rectangular waveguide
and, to a lesser extent, with the TEy mode in circular
waveguide.

MipBAND DissiPATION Loss

There exist several formulas for the dissipation loss in
a transmission-line filter.®?®5.7.4711.18 For narrow-band
filters, which are reflectionless at midband and have
only moderately high dissipation loss, a very useful
formula has been given by Cohn.?® Although his for-
mula is exact only for vanishingly small dissipation loss,
calculations by Taub!! indicate that Cohn's formula
holds quite accurately for up to about 3-db dissipation
loss per resonator. It is also quite simple to extend
Cohn’s formula to where there is substantial reflection
at midband,?3:7:1° and it then becomes

4.3430," 2 .
a0

=1 ui

(AL)o= (1 — | po|?)

7 L. Young, “Prediction of absorption loss in multilayer interfer-
ence filters,” J. Opt. Soc. Am., vol. 52, pp. 753-761; July, 1962.

8 G. L. Matthaei, L. Young, and E. M. T. Jones, op. cit., ch. 15,
sec. 15.03.

® S. Kh. Kogan, “Efficient design of band filters with small dissi-
pative losses,” in “Radio Engineering and Electronic Physics,” vol. 7,
pp. 1238-1244; English translation, Pergamon Press, London, Eng-
land, August; 1963,

0 1. Young, “Group delay and dissipation loss in transmission-
line filters,” IEEE Traxs. on MicrRowAVE THEORY AND TECHNIQUES,
vol. MTT-11, pp. 215-217; May, 1963.

11§, J, Taub, “Design of Minimum Loss Bandpass Filters,” to be
published.

2 L. Young, “Peak internal fields in direct-coupled-cavity filters,”
IRE TrANS. ON MICROWAVE THEORY AND TECHNIQUES, vol. MTT-8,
pp. 612-616; November, 1960. .

1 7, J, Taub and H. J. Hindin, “Minimum Insertion Loss Micro-
wave Filters,” presented at 1963 IEEE-PTGMTT National Sym-
posium, Santa Monica, Calif.; May 20, 1963.
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where pg ts the midband reflection coefficient, the g, are
the #n elements of the low-pass prototype,''? wi is the
cutoff frequency of the low-pass prototype, w is the
fractional bandwidth of the band-pass filter and the Q.;
are the unloaded Q’s of its # resonators. The g, determine
the shape of the characteristic, independently of the
bandwidth, and one can normalize wy’ =1 without loss
of generality. Each resonator generally has the same un-
loaded Q; we shall consider only this case and therefore
drop the numbering suffix <. For a matched filter
([pol =0), (2) simplifies to

(AL4)o = 3)

Thus to minimize the dissipation loss of any matched
filter of given fractional bandwidth and given number of
resonators, we have to maximize Q..

Consider a rectangular waveguide cavity of dimen-
sions @ X b Xc¢, where the couplings are supposed to be
small and are in the two walls a Xb separated by a dis-
tance ¢ (Fig. 1). This cavity forms part of a filter which
is supposed to be narrow-band, with each cavity reso-
nating in the TE;;; mode, so that we can write to a good
approximation

o

- (4)

[4

where N\, is the guide wavelength at the design fre-
quency fo given by
1 1 1
= &)

T = T T }
Ago? NP Al

and where A, is the free-space wavelength at the design
{requency fo and A,=2¢ is the cutoff wavelength.

Fig. 1—Rectangular waveguide cavity.

b= Constant

We shall first consider the case where the waveguide
height b is kept constant as the waveguide width @ is
varied. The ohmic losses in the walls of a given metal
for a given current distribution are proportional to the
surface area and are inversely proportional to the skin
depth, 8. Since we are considering a fixed frequency, the
skin depth is constant. Since we are stipulating a TE1o
mode, the stored energy for a given current distribution
is proportional to the volume. By definition Q, is there-
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fore proportional to the ratio of volume/surface area of
the cavity and is maximum when that ratio is a maxi-
mum. (Compare with Moreno.™) For the TE;, mode,
this reduces to the problem of maximizing the area of a
rectangle @ Xc¢ when the perimeter length 2(a-tc) is
given. The solution is a square, so that we find Q. to be
maximum when

a=c ' (6)
and so

)\,, = 2¢ = >\90 = )\0'\/5 = 14142)\0 (7)

by (5).

[Parenthetically, it is worth pointing out that a sim-
ilar argument can be applied to a TEy mode in a cir-
cular waveguide cavity. Its ratio of volume/surface area
is maximum when the cylinder height is equal to the
cylinder diameter (this agrees with Moreno and Berin-
ger®-15), Also, A, is equal to 0.82 times the diameter, and
therefore (., is maximum and the dissipation loss of
such a filter is minimum when A, is twice the diameter
and

e = 0.410,0 = 1.08)o.] (8)

Returning to the rectangular waveguide cavity (Fig.
1) with a TE,y; resonance, its Q, is given by

0.t b -I

TN Ja+ 2 ¢+ 2b
< at >+( c® >J
1 1
z?f 1+>\02<1+1>
], b 2 a® c8

We could again deduce (6) and (7) by differentiating (9)
with respect to ¢, keeping the design wavelength A, the
skin depth 6 and the waveguide height & constant, and
using (4) and (5). Eq. (9) shows how the Q, or the dis-
sipation loss (3) of a filter varies with the waveguide
cavity shape. This has been plotted in Fig. 2, Curve A,
against X\./\q, for the case b=2\o/4. (In Fig. 2, A, is the
variable and Ay is considered constant.) The recom-
mended limits of a waveguide band are typically at
Ne/A=1.25 and 2;/A=1.9. \,/A=1 is at cutoff, and the
TEs mode begins to propagate at A,/A=2.) Thus the
optimum A,/Ag=1.414, which gives minimum dissipa-
tion loss, lies well inside the usual waveguide band.
However, the variation is very small (less than 3 per
cent) over the entire band, as can be seen from Curve A,
and so the choice of A, or @ is not critical. In fact, it can
readily be shown from (9) that Curve A in Fig. 2 (which
holds for b=2\o/4) always stays below 1.172 and attains

9

14 T, Moreno, “Microwave Transmission Design Data,” Dover
Publications, New York, N. Y., pp. 214-222; 1948.

18 R, Beringer, “Technique of Microwave Measurements,” C. G.
Montgomery, Ed., M.1.T. Rad. Lab. Ser., McGraw-Hill Book Co.,
Inc., New York, N. Y., vol. 11, ch. 5, pp. 300-301; 1947.

16 Jbid., see ch. 5, p. 296.
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Fig. 2—Dissipation loss (A) and pulse power capacity (B and C) of
rectangular-waveguide filters of specified design-frequency
(Mo=constant) and specified bandwidth, relative to their re-
spective minimum values, as a function of the waveguide cut-
off frequency. (Curve C also applies to TE modes in circular-
waveguide filters.)

this value only in the two limits A,=\, (cutoff) and
A.— o (infinitely wide waveguide).

In general, when 6 is not necessarily equal to No/4, the
shape of the curve is similar to Curve A, Fig. 2, and the
ratio of the dissipation loss at either end (A\,=MXo or
Ac—> ) to the minimum dissipation loss, which still oc-
curs at Ao=1.414 N, is (4+No/b)/(24/2+No/b), which is
always less than /2. For a single-mode waveguide b is
less than No/2, and the variation is less than 1.25. When
b=N\¢/4, the expression reduces to 8/(24/24+4)=1.172
as already mentioned. The variation becomes even less
for smaller values of b.

b/a= Constant

So far, b has been kept constant. To compare two
standard waveguides, the ratio b/a is approximately
constant and usually equal or close to 0.5. In that case
(b/a=10.5) Q, increases monotonically from cutoff as a
and b are increased together, finally reaching asymptoti-
cally a value twice that of Q. at cutoff when a and b
become infinitely large. (If it were plotted on Curve 2,
the dissipation loss would decrease continually, reaching
an asymptotic value of one-half of the dissipation loss at
Ae/Ao=1.) It can be shown from (9) that for any con-
stant value of b/a, the asymptotic value of Q, to the
value of Q, at cutoff is (a-+2b)/2b; this reduces to 2
when b/a=0.5. It can also be shown that there is no
minimum in the curve of Dissipation Loss versus A./A¢
(compare Fig. 2) when b/a is constant and less than
1/3(v/2—1)=0.806 (for proof, see Appendix). When
b/a is constant and greater than 0.806, there is a dis-
sipation-loss minimum (Q, maximum) which lies above
Ae/No=~/2. It moves closer to Ae/Ae=+/2 as b/a in-
creases, and for infinite /@ the minimum dissipation loss
would be 1/+/2 times that at either end.

Since for the case of most interest (b/a=0.5) the dis-
sipation loss versus A;/Ao curve has no minimum, this
case is not plotted in Fig. 2. The smallest dissipation
loss is the asymptotic value for infinitely large A./No.
The relative dissipation loss with four important wave-
guide sizes is as follows: The dissipation loss at cutoff
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(Ne/No=1), at the low end of a waveguide band (\,/\,
~1.25), at the high end of a waveguide band (\./\,
~1.9) and in the limit (\./Ap— ), all relative to the
asymptotic value, are respectively 2.00, 1.52, 1.30 and
1.00 (when b/a=0.5). Therefore, as different standard
waveguides are selected, the dissipation loss (or Q)
varies by no more than about 17 per cent, so long as
each filter is operated within the recommended band of
its waveguide (\./Ao between 1.25 and 1.9).

a= Constant

The dissipation loss always decreases ((, increases)
when b is increased and «a is kept constant. If we started
with ¢ =c¢=2b and if b were then increased, the dissipa-
tion loss could be at most halved (Q, could be at most
doubled). If b were reduced towards zero, the dissipa-
tion loss would increase eventually in inverse propor-
tion to b.

PursE PowER CAPACITANCE

The pulse power capacitance, P, of a rectangular
waveguide of cross section ¢ Xb (Fig. 1), propagating a
traveling wave in the TE;, mode, is proportional to?*

Ao
P x agb <—~> .
Ago
When there is also a standing wave having a VSWR
equal to S, then?!?

ab )\0
P x -<—~> .

S\ Ago
It can readily be confirmed (Matthaei, Young and
Jones? or Young!®18) that {for any type of half-wave
filter'®:19 (maximally flat or Chebyshev, etc.) of small

fractional bandwidth w the internal VSWR .S, in the 7/th
cavity is given by

2 0.)1/ )\0 2
S, =— ——) g
m w >\g0

When the response shape, and hence the g,, are given,

(11) reduces to
A
P« u'ab<l0~> .
Ao

We shall differentiate this useful formula to obtain two
different stationary points of P with respect to «, (1) for
b=constant, and (2) for b/a=constant. In both cases

(10)

(11)

(12)

(13)

17 R, M. Walker, “Microwave Transmission Circuits,” G. L.
Ragan, Ed., M.I.T. Rad. Lab. Ser., vol. 9, McGraw-Hill Book Co.,
Inc., New York, N. Y., pp. 190-193; 1948.

18 L. Young, “Stepped impedance transformers and filter proto-
types,” IRE Trans. oN MicrRowavE THEORY AND TECHNIQUES, vol.
MTT-10, pp. 339-359; September, 1962.

19 1. Young, “Direct-coupled-cavity filters for wide and narrow
bandwidths,” IEEE Trans. oN MicrowavE THEORY AND TECH-
NIQUES, vol. MTT-11, pp. 162-178; May, 1963.
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we shall treat w and A as constants, since the band-
width and the center frequency will have been specified
at the outset. We shall also suppose that the number of
resonators has previously been determined [for instance,

by (1)].
b= Constant

Differentiating (13) for constant w, Ay and b and using
(5), vields after some manipulation

e = 22 = Ao = Av/2, (14)
which is the same as (7). However, while (7) or (14)
represent an optimization {or Q, or the dissipation loss,
it gives the least (z.e., worst) pulse power capacitance.
The variation of the pulse power capacitance as a func-
tion of \./\g is obtained from (5) and (13) and is plotted
in Fig. 2, Curve B. (To repeat: In Fig. 2, \, is the vari-
able and A\ is considered constant.) It is seen that the
variation over the recommended waveguide band is 12
per cent. However, considerable improvement in the
pulse power capacitance may be obtained by reducing
the guide width @ to near cutoff. Theoretically, the curve
would go to infinity if the filter bandwidth could be
made infinitesimally small; this result is quite different
from that for Curve A, which always stays below 1.172
{(for b=NAo/4). Moreover, it is well known? that the pulse
power capacitance of waveguide approaches zero as the
guide width ¢ is reduced to cutoff. This can be seen from
(10) when A, — <. The explanation of the apparent
paradox (the filter tending towards infinite pulse power
capacitance when the waveguide pulse power capaci-
tance goes to zero) is that as A= 2a is reduced towards
cutoff, the guide becomes more dispersive, and any fixed
(frequency) fractional bandwidth w corresponds to an
increasing fractional bandwidth in reciprocal-guide
wavelength w, which for small bandwidths is given by

)\g0>2
ZU)\U ‘ZU< )\U .
[This shows up as a factor in (12).] As the guide width
approaches cutoff, the external couplings therefore have
to increase to maintain constant bandwidth. This lowers
each internal VSWR S, more than it lowers the pulse
power capacitance of the waveguide under traveling-
wave conditions. Therefore the final formula, (13),
shows that the midband pulse power capacitance near
waveguide cutoff is nearly proportional to the guide
wavelength A\, which increases without limit. This ex-
plains the perhaps unexpected, unbounded increase in
pulse power capacitance of a waveguide filter of given
bandwidth operating near waveguide cutoff.

Before building a filter operating near waveguide cut-
off, the following considerations should be taken into
account:

Firstly, the dissipation loss increases. For example, it
is seen from Fig. 2, Curves A and B, that when the pulse

(15)
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power is tripled, the dissipation loss increases by about
15 per cent for the case b=\y/4. (As mentioned before,
the dissipation loss increases by at most 17.2 per cent,
in that case.)

Secondly, N/N\o is as low as 1.015 where the pulse
power capacitance is tripled. This means in practice
that the filter fractional bandwidth will have to be less
than about 1 per cent. It also means that the ¢ dimen-
sion of the waveguide has to be maintained very accu-
rately. If one tried to increase the pulse power capaci-
tance indefinitely, the filter bandwidth would have to
shrink to zero.

Thirdly, the guide wavelength becomes large (for
example, Ago= 6N where the pulse power capacitance is
tripled), so that the filter becomes long; it is even longer
when one includes the inhomogeneous transformer?0-2!
or long taper which would probably be required to
match to standard waveguide at each end. [t may there-
fore be more practical to build more cavities or longer
cavities (multiples of N,0/2 long) in standard wave-
guide (A,=~1.5 \y) to increase the pulse power capaci-
tance.

Fourthly, as the guide becomes more dispersive, the
nearest spurious frequency moves closer to the funda-
mental pass band. It would therefore be better to build
more less-dispersive cavities in standard waveguide, as
already suggested above.

So far it has been supposed that the number of reso-
nators # had been predetermined. Suppose, instead, that
we are limited in over-all length; for instance, the filter
may have to be fitted into a length L. When we try to
optimize ¢ (L =constant), we find that ¢ should be in-
finite. Thus, to optimize the pulse power capacitance
when the number of resonators # is given, the filter
length would increase without limit; while if the filter
length, L, were specified, the filter width would increase
without limit. One practical limitation in both cases is
the existence of higher-order modes, and this will be
discussed in the next section. Before that, however, we
shall consider the case b/a=constant, rather than
b=-constant, as we also did in connection with the dis-
sipation loss.

b/a= Constant

As pointed out in a previous section, keeping b/a
=constant corresponds to the case of selecting one of a
number of possible standard waveguides. Rewrite (13)

as follows:
b Ago
P xw <—— a? <—
a )\0

20 1. Young, “Inhomogeneous quarter-wave
Microwave J., vol. 5, pp. 84-89; February, 1962.

2 G. L. Matthaei, L. Young, and E. M. T. Jones, op. cit., see ch. 6,
sec. 6.11 and 6.12.

(16)

transformers,”
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and now treat w, Ao and b/a as constants. Using (5) and
differentiating, now leads to

Ao '3
)\c = 2d = — = >\o _— = 12247)\0
V2 2

(17
instead of (14). Again this gives the least pulse power
capacitance; its variation as a function of \./Aq is ob-
tained from (5) and (16) and is plotted in Fig. 2, Curve
C. If we wished to stay inside the recommended wave-
guide band, then Curve C shows that for the greatest
pulse power capacitance a waveguide should be selected
so that the filter pass band lies at the high-frequency
end of the recommended waveguide band. The mini-
mum pulse power capacitance occurs when the filter
pass band lies just below the low-frequency end of the
waveguide band; it is seen from Curve C that the im-
provement in pulse power capacitance can be as much
as 63 per cent. On the other hand, the pulse power
capacitance increases without limit as the guide ap-
proaches cutoff, so that, instead of picking the largest
waveguide which contains the filter pass band in its rec-
ommended band, one could select the smallest wave-
guide which is just not cutoff, and apparently fare even
better. However, there are several disadvantages to this
second alternative, which have already been enumerated
above.

Curve C can also be used for the TEy mode in a cir-
cular-waveguide filter® and generally holds for any TE
mode in a waveguide filter of fixed cross-sectional
shape,?? of which rectangular waveguide with fixed b/a
ratio and circular waveguide, are the two most impor-
tant examples.

a = Constant

When @ is constant the pulse power capacitance is
directly proportional to b.

Spurious Responsis (HicaER-ORDER MODES)

The first spurious resonance in the rectangular wave-
guide filter (Fig. 1) will generally occur at a frequency
just above that for which

N =a or g (18)
whichever is the larger (unless special precautions are
taken to suppress the resonance). It follows from (18)

that the nearest spurious response is the farthest away
when

(19)

a =g,

22 Since the cross-sectional area is then proportional to A2, which
replaces a? in (16). The (\g/A;) dependence in (11) is true for all TE
modes. Compare Moreno®, p. 124.
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and so

>\c = 2d = >\g0 = )\n'\/ﬁ, (20)

which is the same as (7) and (14). Thus, in a rectangular-
waveguide filter, there is always the possibility of a
spurious resonance within about 41.4 per cent of the
fundamental pass band.

CONCLUSIONS

When the filter response is already determined (its
operating {requency, fractional bandwidth w and num-
ber of resonators # being given), then in rectangular
waveguide of constant height b the minimum dissipation
loss (maximum unloaded Q), the minimum pulse power
capacitance and the greatest separation from the near-
est spurious resonance, are obtained with cavities that
are square (length, ¢=width, a), corresponding to (7),
(14) or (20), showing that A,/MNo=+/2. Unless pulse
power capacitance is an over-riding consideration, this
is the best place to operate. The advantages of deviating
appreciably from the square shape (c=a) when pulse
power capacitance is critical may be more apparent than
real; it may be better to redesign the filter, adding more
cavities to allow for looser couplings. Graphs were given
(Curves A and B, Fig. 2) showing how much is to be
gained or lost by departing from the minima determined
by (7) and (14). In the case of the dissipation loss in a
single-mode, rectangular, waveguide filter of constant
height, it was found that varying the waveguide width
does not increase the dissipation loss by more than 25
per cent above its minimum value (which occurs when
c=a).

When the aspect ratio b/a is kept constant and less
than 0.806, the dissipation loss of the filter decreases
continually as the waveguide size is increased. The mini-
mum pulse power capacitance of the filter, when the
aspect ratio b/a is kept constant, occurs at Ao/No=+/3/2,
by (17), which is just below the low-frequency end of
the usually recommended waveguide band. The pulse
power capacitance increases in both directions (Fig. 2,
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Curve C), rising in one direction toward the high-fre-
quency end of the recommended band, but also rising
in the other direction towards cutoff. Curve C, Fig. 2,
also holds for all TE modes in waveguides with constant
cross-sectional shape, including all TE modes in circular
waveguide.

ArPENDIX
Dissipation Loss for b/a= Constant
Let
z = A/N and y = N/N\; (21)
then (5) reduces to
1 1
—+— =1 (22)
xZ y‘l
Let
b/a = constant = 1/2K; (23)
then (9) reduces to
1 K 1 1
S — (24)

Qu x x? y?

For a stationary point, differentiate (24) and use (22).
This gives

K2x* 4 (6K — 9)a? + 18 = 0. (25)
For the stationary point to be real, we require
(6K — 9)* — T2K2 > 0, (26)
which reduces to
1
b/a =1/2K < m . 27
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