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Some Considerations in the
NarrowOBand Waveguide

Design

Filters*

LEO YOUNG~, SENIOR MEMBER, IEEE

Swnrnaru-It is natural that design considerations common to
all kinds of filters should have received most attention in the litera-
ture. Some design considerations which are peculiar to waveguide
filters (being due to the dispersive property of wavegnides) are
treated in this paper. It is shown that there are waveguide dimensions
which minimize the filter dissipation loss and also the filter pulse

power capacitance and which keep the nearest spurious-frequency

response farthest from the fundamental pass band. Graphical data
are presented to show how much is to be gained or lost by departing

from the usual dimensions.

INTRODUCTION

A

FILTER (by definition) is required to operate

selectively over a spectrum of frequencies. The

specified frequency behavior can usually be met

by a variety of possible designs, some of which are bet-

ter suited than others to satisfy various additional re-

quirements which may be specified or desirable; the

electrical requirements may include low dissipation loss,

high pulse power capacitance and freedom from spurious

responses, in addition to the specified amplitude or

phase characteristics.

Some general design considerations, common to

lumped-constant, TE!M-line (nondispersive) and wave-

guide (homogeneously dispersive) filters will first be

* Received July 5, 1963; revised manuscript received .&ugust 7,
1963. This work was supported by the Rome Air Development
Center under Contracts AF 30(602)-2734 and AF 30(602)-3174.

~ Stanford Research Institute, Menlo Park, Calif.

summarized. Then we will discuss some special consid-

erations that are peculiar to waveguide filters, which

have an extra degree of freedom allowed by the choice

of waveguide cutoff wavelength.

GENERAL CONSIDERATIONS FOR BAND-PASS FILTERS

The design of narrow-band filters can be based on a

lumped-constant, low-pass prototype circuit.1 Formulas

and tablesq exist for filter elements g,, which give max-

imally flat, Chebyshev and maximally flat time delay

characteristics. Sometimes it is preferred to make the

filter elements all equal to one another (all g;= g). A

microwave filter based on this prototype may be con-

sidered to consist of a cascade of identical cavities and

will be called a matched-periodic (or just periodic)

filter.3,4 S. B. Cohns’6 has shown that such a filter has

1 S. B. Cohn. “Direct-couded-resonator filters. ” f?ROC. IRE. vol.
45, pp. 187-196 ~February, 1~57.

2 G. L. LIatthaei, L. Young, and E. M. T. Jones, “Design of
Microwave Filters, Impedance-Matching Networks, and Coupling
Structures, ” SRI Project No. 3527, Contract No. DA 36-039 SC-87
398; January, 1963. See ch. 4, sees. 4.04-4.07 and 4.13.

3 Matthaei, et al., ibid., see ch. 6, sees. 6.09, 6.14 and 6.15.
4 L. Young, “Attenuation characteristics of periodic (equal-ele-

mel~t~ fi~co~~. IEEE, vol. 51, pp. 960–961; June, 1963.
“Dissipation loss in multiple-coupled-resonator

filters,”” PROC. IRE, vol. 47, pp. 1342–1348; August, 1959.
e S. B. Cohn, “Design considerations for high-power microwave

filters, ” IRE TRANS. ON MICROWAVE THEORY AND TECHNIQUES,
vol. IL’ITT-7, pp. 149–153; January, 1959.
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minimum dissipation losss,b,’ and maximum pulse power

capacitance, s for a given selectivity. It can further be

shown that there is an optimum number n of resonators

to give minimum midband dissipation loss in narrow-

band filters. ‘--11 When the stop-band attenuation is

specified to be A db at any frequency in the stop band,

then

?L = 0.115A + 0.7 (1)

resonators should be used.

In any filter there is a connection between the dis-

sipation 10SS,Z,3 10 the equivalent power ratio8, 12 and the

group delay, which are approximately proportional to

one another. (The equivalent power ratio is inversely

proportional to the pulse power capacitance.) All three

quantities usually increase as the frequency moves away

from midband, reach a fairly sharp peak just outside

the pass band and then fall off quite rapidly .8,12

The properties briefly summarized above hold for

waveguide as well as other types of filter. They show,

for instance, how the pass-band dissipation loss can be

minimized, or the pulse power can be maximized, in

terms of the filter elements, or by controlling their num-

ber. It is our purpose now to show that for waveguide

filters in particular, the waveguide dimensions can be

optimized under various conditions. We shall be mostly

concerned with the TEIO mode in rectangular waveguide

and, to a lesser extent, with the TEO1 mode in circular

waveguide.

NIIDBAND DISSIPATION Loss

There exist several formulas for the dissipation loss in

a transmission-line filter.2!3J,7,9–11’13 For narrow-band

filters, which are reflectionless at midband and have

only moderately high dissipation loss, a very useful

formula has been given by Cohn.2,5 Although his for-

mula is exact only for vanishingly small dissipation loss,

calculations by Taub 11 indicate that Cohn’s formula

holds quite accurately for up to about 3-db dissipation

loss per resonator. It is also quite simple to extend

Cohn’s formula to where there is substantial reflection

at midband,2’3’7’10 and it then becomes

where po is the midband reflection coefficient t, the g, are

the n elements of the low-pass prototype, 1‘2 u1’ is the

cutoff frequency of the low-pass prototype, w is the

fractional bandwidth of the band-pass fillter and the Q.;

are the unloaded Q’s of its n resonators. The g, determine

the shape of the characteristic, independently of the

bandwidth, and one can normalize u<=: 1 without loss

of generality. Each resonator generally has the same un-

loaded Q; we shall consider only this case and therefore

drop the numbering suffix Z. For a matched filter

(1 Po] = O), (2) simplifies to

(ALdo w -+ Q (3)

Thus to minimize the dissipation loss c)f any matched

filter of given fractional bandwidth and given number of

resonators, we have to maximize Q..

Consider a rectangular waveguide cavity of dimen-

sions a x b xc, where the couplings are supposed to be

small and are in the two walls a Xb separated by a dis-

tance c (Fig. 1). This cavity forms part of a filter which

is supposed to be narrow-band, with each cavity reso-

nating in the TEIOl mode, so that we can write to a good

approximation

(4)

where Ago is the guide wavelength at the design fre-

quency to given by

111
.— —— ,

Ago2 h+ AC2
(5)

and where AO is the free-space wavelength at the design

frequency j. and AC= 2a is the cutoff wavelength.

7 L, Young, “Prediction of absorption loss in multilayer interfer-
ence filters, ” J. Opt. Sot. Am., vol. 52, pp. 753-761; July, 1962.

s G. L. Matthaei, L. Young, and E, M. T. Jones, op. cit., ch. 15,
sec. 15,03.

g S. Kh. Kogan, “Efficient design of band filters with small dissi-
pative losses, “ in “Radio Engineering and Electronic Physics, ” vol. 7,
pp. 1238–1244; English transfiation, Pergamon Press, London, Eng-
land, August; 1963.

10 L, young, ~IGrouP ~el~Y and dissipation 10ss in transmission-

line filters, ” IEEE TRANS. ON iYIICROWAVE THEORY AND TECHNIQUES,
vol. MTT-11, pp. 215–217; hIay, 1963.

“J. J. Taub, “Design of Minimum Loss Bandpass Filters, ” to be
published.

12L. Young, “Peak internal fields in direct-coupled-cavity falters,”
IRE TRANS. ON k’frcRowAvE THEORY AND TECHNIQUES, vol. ilITT-8,
pp. 612–616; November, 1960.

waVeJ~~~e~~b and H. J. Hindin,
“Minimum Insertion Loss hlicro-

presented at 1963 IEEE-PTGlbITr National Sym-
posium, San/a Monica, Calif.; May 20, 1963.

Fig. l—Rectangular waveguide C~lVi@.

b = Constant

We shall first consider the case where the waveguide

height b is kept constant as the waveguide width a is

varied. The ohmic losses in the walls of a given metal

for a given current distribution are proportional to the

surface area and are inversely proportional to the skin

depth, 8. Since we are considering a jixed fvequency, the

skin depth is constant. Since we are stipulating a TEIO

mode, the stored energy for a given current distribution

is proportional to the volume. By definition Qu is there-



524 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES November

fore proportional to the ratio of volume/surface area of

the cavity and is maximum when that ratio is a maxi-

mum. (Compare with IVIoreno.14) For the TEIO mode,

this reduces to the problem of maximizing the area of a

rectangle a X c when the perimeter length 2 (a + c) is

given. The solution is a square, so that we find Q. to be

maximum when

a=c, (6)

and so

AC = 2a = AOO= A04~ = 1.4142A0 (7)

by (5).

[Parenthetically, it is worth pointing out that a sim-

ilar argument can be applied to a TEO1 mode in a cir-

cular waveguide cavity. Its ratio of volume/surface area

is maximum when the cylinder height is equal to the

cylinder diameter (this agrees with Moreno and Berin-

ger’’,]’). Also, & is equal to 0.82 times the diameter, and

therefore Q. is maximum and the dissipation IOSS of

such a filter is minimum when l~o is twice the diameter

and

xc = 0.41k,0 = 1.08A0.] (8)

Returning to the rectangular waveguide cavity (Fig.

1) with a TEIOI resonance, its Q. is given by’”

1

r

1
.—

( )1”

(9)
ii

1
+-+: ;+$

We could again deduce (6) and (7) by differentiating (9)

with respect to a, keeping the design wavelength Ao, the

skin depth 6 and the waveguide height b constant, and

using (4) and (5). Eq. (9) shows how the Qu or the dis-

sipation loss (3) of a filter varies with the waveguide

cavity shape. This has been plotted in Fig. 2, Curve A,

against AJAo, for the case b =AO/4. (In Fig. 2, he is the

variable and AO is considered constant. ) The recom-

mended limits of a waveguide band are typically at

A,/h= 1.25 and he/A= 1.9. (A,/h= 1 is at cutoff, and the

TEZO mode begins to propagate at A./h= 2.) Thus the

optimum AJ& = 1.414, which gives minimum dissipa-

tion loss, lies well inside the usual waveguide band.

However, the variation is very small (less than 3 per

cent) over the entire band, as can be seen from Curve A,

and so the choice of A. or a is not critical. In fact, it can

readily be shown from (9) that Curve A in Fig. 2 (which

holds for b = AO/4) always stays below 1.172 and attains

14T. Moreno, “Microwave Transmission Design Data, ” Dover
Publicationsl New York, N. Y., pp. 214–222; 1948.

‘5 R. Bermger, “Technique of Microwave Measurements, ” C. G.
Montgomery, Ed., M.I.T. Rad. Lab. Ser., McGraw-Hill Book Co.,
Inc., New York, N. Y., vol. 11, ch. 5, pp. 300--301; 1947.

16Ibid., see ch. 5, p. 296.
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Fig. 2—Dissipation lOSS(A) and pulse power capacity (B and C) of
rectangular-waveguide filters of specified design-frequency
(AO= constant) and specified bandwidth, relative to their re-
spective minimum values, as a function of the waveguide cut-
off frequency. (Curve C also applies to TE modes in circular-
waveguide filters.)

this value only in the two limits L =Ao (cutoff) and

AC* w (infinitely wide waveguide).

In general, when b is not necessarily equal to AO/4, the

shape of the curve is similar to Curve A, Fig. 2, and the

ratio of the dissipation loss at either end (A. = AO or

AC+ m ) to the minimum dissipation loss, which still oc-

curs at X.= 1.414 AO, is (4+ A0/b)/(2<~+h0/b), which is

always less than 42. &-or a single-mode waveguide b is

less than ho/2, and the variation is less than 1.25. When

b =AO/4, the expression reduces to 8/(2 v’~+4) = 1.172

as already mentioned. The variation becomes even less

for smaller values of b.

b/a = Constant

So far, b has been kept constant. To compare two

standard waveguides, the ratio b/a is approximately

constant and usually equal or close to 0.5. In that case

(b/a = 0.5) Qu increases monotonically from cutoff as a

and b are increased together, finally reaching asymptoti-

cally a value twice that of Qu at cutoff when a and b

become infinitely large. (If it were plotted on Curve 2,

the dissipation loss would decrease continually, reaching

an asymptotic value of one-half of the dissipation loss at

A,/AO = 1.) It can be shown from (9) that for any con-

stant value of b/a, the asymptotic value of Q. to the

value of Qu at cutoff is (a+2b)/2b; this reduces to 2

when b/a = 0.5. It can also be shown that there is no

minimum in the curve of Dissipation LOSS versus A,/Ao

(compare Fig. 2) when b/a is constant and less than

1/3(<?– 1)= 0.806 (for proof, see Appendix). When

b/a is constant and greater than 0.806, there is a dis-

sipation-loss minimum (Q,, maximum) which lies above

A,/A, = v’~. It moves closer to &/AO = v’? as b/a in-

creases, and for infinite b/a the minimum dissipation loss

would be l/J~ times that at either end.

Since for the case of most interest (b/a= 0.5) the dis-

sipation loss versus AJAO curve has no minimum, this

case is not plotted in Fig. 2. The smallest dissipation

loss is the asymptotic value for infinitely large &/XO.

The relative dissipation loss with four important wave-

guide sizes is as follows: The dissipation loss at cutoff
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(A./ho = 1), at the low end of a waveguide band (lC/XO

= 1.25), at the high end of a waveguide band (h,/AO

= 1.9) and in the limit (A,/AO-+ ~ ), all relative to the

asymptotic value, are respectively 2.00, 1,52, 1,30 and

1.00 (when b/a = 0.5), Therefore, as different standard

waveguides are selected, the dissipation loss (or Q,,)

varies by no more than about 17 per cent, so long as

each filter is operated within the recommended band of

its waveguide (AJ’w between 1.25 and 1.9).

a = Constant

The dissipation loss always decreases (QU increases)

when b is increased and a is kept constant. If we started

with a = c = 2b and if b were then increased, the dissipa-

tion loss could be at most halved (Qti could be at most

doubled). If b were reduced towards zero, the dissipa-

tion loss would increase eventually in inverse propor-

tion to b.

PULSE POWER CAPACITANCE

The pulse power capacitance, P, of a rectangular

waveguide of cross section a X b (Fig. 1), propagating a

traveling wave in the TEIO mode, is proportional to8 ,17

(lo)

When there is also a standing wave having a VSVVR

equal to S, then8,1~

(11)
S \AgO/

It can readily be confirmed (Matthaei, Young and

Jones’ or \’oung10’8) that for any type of half-wave

filter18,1’ (maximally flat or Chebyshev, etc.) of small

fractional bandwidth w the internal VSWR S, in the ith

cavity is given by

(12)

YfThen the response shape, and hence the g,, are given,

(11) reduces to

(13)
\Ao/

We shall differentiate this useful formula to obtain two

different stationary points of P with respect to a, (1) for

b = constant, and (2) for b/a= constant. In both cases

1? R. ilII. lValker, ‘(Microwave Transmission Circuits, ” G. L.
Ragan, Ed., M.1.T. Rad. Lab. Ser., vol. 9, McGraw-Hill Book Co.,
Inc., New York, N. Y., pp. 190-193; 1948.

‘8 L. Young, “Stepped impedance transfol-mers and filter proto-
ty-pes, ” IRE TRANS. ON MICROWAVE THEORY AND TECHNIQUES, vol.
NITT-10, pp. 339–359; September, 1962.

19 L. Young, “Direct-coupled-cavity filters for wide and narrow
bandwidths, ” IEEE TRANS. ON MICROWAVE TDIWRY AND “rl3CH-
NIQUES, vol. iWI’T-11, pp. 162–178; May, 1963.

we shall treat w and XO as constants, :since the band-

width and the center frequency will have been specified

at the outset. We shall also suppose that the number of

resonators has previously been determinec[ [for instance,

by (i)].

b = Consfant

Differentiating (13) for constant a, 10 and b and using

(5), yields after some manipulation

k. = 2a = X,O = hod?, (14)

which is the same as (7). However, while (7) or (14)

represent an optimization for Q,, or the dissipation loss,

it gives the least (i. e., worst) pulse power capacitance.

The variation of the pulse power capacitance as a func-

tion of AL/AO is obtained from (5) and (13) and is plotted

in Fig. 2, Curve B. (To repeat: In Fig. 2, & is the vari-

able and ho is considered constant. ) It is seen that the

variation over the recommended waveguide band is 12

per cent. However, considerable improvement in the

pulse power capacitance may be obtain,ed by reducing

the guide width a to near cutoff. Theoretically, the curve

would go to infinity if the filter bandwidth could be

made infinitesimally small; this result is quite different

from that for Curve A, which always stays below 1.172

(for b ==AO/4). Moreover, it is well known’T that the pulse

power capacitance of waveguide approaches zero as the

guide width a is reduced to cutoff. This can be seen from

(10) when Ago+ co. The explanation of the apparent

paradox (the filter tending towards infinite pulse power

capacitance when the waveguide pulse power capaci-

tance goes to zero) is that as h,= 2a is reduced towards

cutoff, the guide becomes more dispersive, and any fixed

(frequency) fractional bandwidth w corresponds to an

increasing fractional bandwidth in reciprocal-guide

wavelength wk, which for small bandwidths is given by

()Ago 2
VA” =W—.

All
(15)

[This shows up as a factor in (12).] As the guide width

approaches cutoff, the external couplings therefore have

to increase to maintain constant bandwidth. This lowers

each internal VSWR S, more than it lowers the pulse

power capacitance of the waveguide u rider traveling-

wave conditions. Therefore the final formula, (13),

shows that the midband pulse power capacitance near

waveguide cutoff is nearly proportional to the guide

wavelength k~o which increases without. limit. This ex-

plains the perhaps unexpected, unbounded increase in

pulse power capacitance of a waveguicle filter of given
baadwidth operating near waveguide cutc,ff.

Before building a filter operating near vvaveguide cut-

off, the following considerations should be taken into

account:

Firstly, the dissipation loss increases. For example, it

is seen from Fig. 2, Curves A and B, that when the pulse
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power is tripled, the dissipation loss increases by about

15 per cent for the case b = AO/4. (As mentioned before,

the dissipation loss increases by at most 17.2 per cent,

in that case. )

Secondly, &/XO is as low as 1.015 where the pulse

power capacitance is tripled. This means in practice

that the filter fractional bandwidth will have to be less

than about 1 per cent. It also means that the a dimen-

sion of the waveguide has to be maintained very accu-

rately. If one tried to increase the pulse power capaci-

tance indefinitely, the filter bandwidth would have to

shrink to zero.

Thirdly, the guide wavelength becomes large (for

example, XUO= 6A0 where the pulse power capacitance is

tripled), so that the filter becomes long; it is even longer

when one includes the inhomogeneous transformer20,21

or long taper which would probably be required to

match to standard waveguide at each end. It may there-

fore be more practical to build more cavities or longer

cavities (multiples of AOo/2 long) in standard wave-

guide (Ac = 1.5 AO) to increase the pulse power capaci-

tance.

Fourthly, as the guide becomes more dispersive, the

nearest spurious frequency moves closer to the funda-

mental pass band. It would therefore be better to build

more less-dispersive cavities in standard waveguide, as

already suggested above.

So far it has been supposed that the number of reso-

nators n had been predetermined. Suppose, instead, that

we are limited in over-all length; for instance, the filter

may have to be fitted into a length L. When we try to

optimize a (L= constant), we find that a should be in-

finite. Thus, to optimize the pulse power capacitance

when the number of resonators n is given, the filter

length would increase without limit; while if the filter

length, L, were specified, the filter width would increase

without limit. One practical limitation in both cases is

the existence of higher-order modes, and this will be

discussed in the next section. Before that, however, we

shall consider the case b/a = constant, rather than

b = constant, as we also did in connection with the dis-

sipation loss.

b/a = Constant

As pointed out in a previous section, keeping b/a

= constant corresponds to the case of selecting one of a

number of possible standard waveguides. Rewrite (13)

as follows:

p K‘E)az(%) (16)

ZOL. Young, “Inhomogeneous quarter-wave transformers, ”
Microwane J., vol. 5, pp. 84–89; February, 1962.

21G. L. Matthaei, L. Young, and E. M. T. Jones, @. cit., see Ch. 6,
sec. 6.11 and 6.12.

and now treat w, XO and b/a as constants. Using (5) and

differentiating, now leads to

instead of (14). Again this gives the least pulse power

capacitance; its variation as a function of A,/ho is ob-

tained from (5) and (16) and is plotted in Fig. 2, Curve

C. If we wished to stay inside the recommended wave-

guide band, then Curve C shows that for the greatest

pulse power capacitance a waveguide should be selected

so that the filter pass band lies at the high-frequency

end of the recommended waveguide band. The mini-

mum pulse power capacitance occurs when the filter

pass band lies just below the low-frequency end of the

waveguide band; it is seen from Curve C that the im-

provement in pulse power capacitance can be as much

as 63 per cent. On the other hand, the pulse power

capacitance increases without limit as the guide ap-

proaches cutoff, so that, instead of picking the largest

waveguide which contains the filter pass band in its rec-

ommended band, one could select the smallest wave-

guide which is just not cutoff, and apparently fare even

better. Howeverj there are several disadvantages to this

second alternative, which have already been enumerated

above.

Curve C can also be used for the TEO1 mode in a cir-

cular-waveguide filter8 and generally holds for any TE

mode in a waveguide filter of fixed cross-sectional

shape, 22 of which rectangular waveguide with fixed b/a
ratio and circular waveguide, are the two most impor-

tant examples.

a = Constant

When a is constant the pulse power capacitance is

directly proportional to b.

SPURIOUS RESPONSES (I+ IIGHER-ORDER MoDEs)

The first spurious resonance in the rectangular wave-

guide filter (Fig. 1) will generally occur at a frequency

just above that for which

AO=a or c, (18)

whichever is the larger (unless special precautions are

taken to suppress the resonance). It follows from (18)

that the nearest spurious response is the farthest away

when

~=~ 9 (19)

22Since the cross-sectional area is then proportional to AOZ,which

replaces az in (16). The (Xo/A~o) dependence in (11) is true for all TE
modes. Compare Morenol$, p. 124.
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and so

h, = 2a = A,O = hOV’?, (20)

which is the same as (7) and (14), Thus, in a rectangular-

waveguide filter, there is always the possibility of a

spurious resonance within about 41.4 per cent of the

fundamental pass band.

CONCLUSIONS

When the filter response is already determined (its

operating frequency, fractional bandwidth w and num-

ber of resonators n being given), then in rectangular

waveguide of constant height b the minimum dissipation

loss (maximum unloaded Q), the minimum pulse power

capacitance and the greatest separation from the near-

est spurious resonance, are obtained with cavities that

are square (length, c = width, a), corresponding to (7),

(14) or (20), showing that h./Xo = <~. Unless pulse

power capacitance is an over-riding consideration, this

is the best place to operate. The advantages of deviating

appreciably from the square shape (c= a) when pulse

power capacitance is critical maybe more apparent than

real; it may be better to redesign the filter, adding more

cavities to allow for looser couplings. Graphs were given

(Curves A and B, Fig. 2) showing how much is to be

gained or lost by departing from the minima determined

by (7) and (14). In the case of the dissipation loss in a

single-mode, rectangular, waveguide filter of constant

height, it was found that varying the waveguide width

does not increase the dissipation loss by more than 25

per cent above its minimum value (which occurs when

c=a).

When the aspect ratio b/a is kept constant and less

than 0.806, the dissipation loss of the filter decreases

continually as the waveguide size is increased. The mini-

mum pulse power capacitance of the filter, when the

aspect ratio b/a is kept constant, occurs at A,/ho = ~3/2,

by (17), which is just below the low-frequency end of

the usually recommended waveguide band. The pulse

power capacitance increases in both directions (Fig. 2,

Curve C), rising in one direction toward the high-fre-

quency end of the recommended band, t,ut also rising

in the other direction towards cutoff. Curve C, Fig. 2,

also holds for all TE modes in waveguides with constant

cross-sectional shape, including all TE modes in circular

waveguide.

APPENDIX

Dissipation Loss for b/a = Constant

Let

x = ACIA and y = k~/A;

then (5) reduces to

++:=l.
Y2

Let

b~a = constant = l/2K; (23)

then (9) reduces to

(21)

(22)

lK1l
u—+—+—.

EX *’Y’

(2+)

For a stationary point, differentiate (24) and use (22).

This gives

K’.x’ + (6K – 9)$2 + 18 = (). (25)

For the stationary point to be real, we require

(6K – 9)’ – 72K’ >0, (26)

which reduces to

1
b/a = l/2K <

3(<2 – 1) “
(27)
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